
Your First Million Players
Scalable Architecture for Digital Games

Who are we?

Andrew Kane
andrewmkane.com
@codemastermm

Who are we?

Dev Purkayastha
devpurkayastha.com
@devp

Who are we?

Jordan Toor
@gammasts

What is "scalability"?

"Ability of a system ... to handle a growing
amount of work ... or its ability to be enlarged to
accommodate that growth"

http://en.wikipedia.org/wiki/Scalability

How does one scale?

"it depends"
- Brian Ballsun-Stanton (Data Architect, University of New South Wales)

Yes, really. "It depends".

Functional Tiers of a Game

Functional Tiers of a Game

Client Client Client Client

Load Balancer

Server / Application

Cache Data Storage

Client Tier

● Buffering server communication
● Only grab what you need
● Cache on the client when possible

Static data

● Store consistent data in clients' memory
● Provide generated data in client builds
● Cache mostly consistent data queries
● Content Delivery Network (CDN)

Consistent Data Stored Client-side

Store data that the client will be able to reuse.

Examples:
● item information
● localization of text

Content Delivery Network (CDN)

● Almost unlimited scaling (for static content)
● Offset scaling issues to service providers
● Data is closer to the client as well

image via Kanoha - wikipedia

http://commons.wikimedia.org/w/index.php?title=User:Kanoha&action=edit&redlink=1

Connectivity Tier

● Send only what you need
● Slim down the packet:

○ compress data (gzip, etc.)
○ msgpack
○ Protocol Buffers

● Separate networks
● For mobile: make fewer requests

Interchange Format Comparison

JSON: "create_account"
{

"api": "create_account",
"username": "user123",
"password": "popsicles",
"email": "user123@example.com",
"first_name": "Joe",
"last_name": "Schmo"

}

XML: "create_account"
<?xml version="1.0" encoding="UTF-8" ?>

<api>create_account</api>

<account>

<username>user123</username>

<password>popsicles</password>

<email>user123@example.com</email>

</account>

<user_details>

<name type="first>Joe</name>

<name type="last">Schmo</name>

</user_details>

</xml>

Protocol Buffer: "create account"
0a 07 75 73 65 72 31 32 33 12 09 70 6f 70 73 69 |..user12 3..popsi|

63 6c 65 73 1a 13 75 73 65 72 31 32 33 40 65 78 |cles..us er123@ex|

61 6d 70 6c 65 2e 63 6f 6d 22 03 4a 6f 65 2a 05 |ample.co m".Joe*.|

53 63 68 6d 6f |Schmo |

Balancing

● Balance workload between servers
● Data Priority
● Content-aware delegation
● Security

○ Firewall
○ DoS protection

Server/Application Tier

● Modularize!
● Support your balancing strategy

○ Usually stateless
● Proper application server

○ Example: Apache HTTP vs nginx for HTTP
○ Example: Glassfish vs Tomcat vs Jetty vs ...

● Language choice probably doesn't matter
○ Unless it does

Data(base) Tier

● Cache seldom changed data queries
● Proper DBMS for data storage & access
● Optimize database queries

○ Indices may be good or bad
○ Normalization can also good or bad

Choosing your DBMS

● Use DBMSs that store your data logically
○ Tabular (MySQL, PostgreSQL, MSSQL, etc.)
○ Document (CouchDB, MongoDB, etc.)
○ Key-Value (Membase, Redis, Riak, etc.)

DBMS Choice Example

Data Sharding
document or tabular store:

player { id, server_id }

key-value store:
player_id => server_id

Item Information
key-value store:

item_id => json information

tabular store:
item { item_id, name, desc,

effect1, effect1, effect3,
status1, status2 ... }

document store:
item { item_id, name, desc,
effects: [...],

status: [...] }

Caching Data Queries

Cache calls to services that provide near
consistent data results.

Examples:
● GeoLocation
● Enemy & Monster information
● Account information

Example!

SELECT profile
FROM users WHERE
user=123

SELECT profile
FROM users WHERE
user=123

SELECT profile
FROM users WHERE
user=123

● New servers in an instant!
● IaaS (AWS, Heroku, etc.)

○ Easier
○ Less control

● But will instant servers help you scale?

Virtualization and Clouds

Scaling Timeline

Early stage:

"We should forget about small efficiencies, say
about 97% of the time: premature optimization

is the root of all evil." - Donald Knuth

(It depends.)

Before you launch:
● monitoring and metrics

○ You can't fight what you can't see.
● velvet rope for new users

○ You will be overwhelmed.

Scaling Timeline

Scaling Timeline

Single App/DB Node

App Node, Cache Node, Database Node

Load Balancer
Multiple App Nodes
Multiple Cache Nodes
Multiple Database Nodes Splitting off Services (Account Service, Player Service, etc.)

Questions? Contact Info? Puppies?

Feel free to contact us later!

Andrew: @codemastermm andrew@andrewmkane.com
Dev: @devp devp@modmetaphor.com
Jordan: @gammasts gammasts@gmail.com

